חAmibia uחIversity
of SCIETCE AחD TECHCOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

SCHOOL OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF BIOLOGY, CHEMISTRY AND PHYSICS

QUALIFICATION : BACHELOR OF HUMAN NUTRITION BACHELOR OF ENVIRONMENTAL HEALTH SCIENCES BACHELOR OF HEALTH INFORMATION SYSTEMS MANAGEMENT BACHELOR OF MEDICAL LABORATORY SCIENCES	
QUALIFICATION CODE: 08BOHN, 08BOHS, O7BHIS, 08BBMS	LEVEL: 5
COURSE CODE: HSP511S	COURSE NAME: HEALTH SCIENCE PHYSICS
SESSION: JUNE 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATIONS QUESTION PAPER	
EXAMINER(S)	DR VAINO INDONGO
MODERATOR:	PROF. DIPTI SAHU

INSTRUCTIONS:

1. Answer all the questions in the booklet provided
2. Show clearly all the steps used in the calculations
3. All written work MUST be done in blue or black ink and sketches must be done in pencils.

PERMISSIBLE MATERIALS

Non-Programmable Calculator

THIS PAPER CONSISTS OF 7
(INCLUDING THIS FRONT PAGE)

SECTION A

QUESTION 1

Multiple choice questions types: Each question carries two marks

1.1 The dimensions of Volume are given by;
A. L^{3}
B. $\mathrm{L}^{2} \mathrm{~T}^{2}$
C. dimensionless
D. MLT^{-1}
1.2 \qquad is the unit of impulse.
A. W
B. Hz
C. Ns
D. NS
1.3 One of these is the dimension of force.
A. ML^{2}
B. MLT^{-1}
C. $\mathrm{M}^{2} \mathrm{~T}^{2}$
D. MLT^{-2}
1.4 \qquad is a unit of force.
A. $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$
B. kg
C. m / s
D. cm^{3}
1.5Which of the following physical quantity is dimensionless?
A. Angle
B. Strain
C. Specific gravity
D. All of the above
1.6 The dimensional formula of angular velocity is.
A. MLT
B. MLT^{2}
C. $\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}$
D. $\mathrm{M}^{-1} \mathrm{LT}^{-1}$
1.7 The dimensions of WORK are;
A. MLT
B. $M L^{2} T^{-2}$
C. MLT^{-1}
D. $\mathrm{ML}^{2} \mathrm{~T}^{-1}$
1.8 The rate of change of displacement of a particle is referred to as
A. speed
B. velocity
C. acceleration
D. power
1.9 Which of the following is a physical quantity that has a magnitude but no direction?
A. Vector
B. Frame of reference
C. Resultant
D. Scalar
1.10 The difference between speed and velocity is:
A. speed has no units
B. they use different units to represent their magnitude
C. speed shows only magnitude, while velocity represents both magnitude (strength) and direction
D. velocity has a higher magnitude
1.11 A dot product of any two vectors gives a \qquad .
A. vector
B. vector and scalar
C. scalar
D. unit vector
1.12 \qquad is the rate of change of energy?
A. Work
B. Power
C. Frequency
D. Viscosity
1.13 The forces of 20 N towards north and 12 N towards south are acting on an object. What will be resultant force?
A. 32 N toward north
B. 20 N towards north
C. 32 N towards south
D. 8 N towards north
1.14 A steel bar is precisely 1.6 m at $25^{\circ} \mathrm{C}$. At what temperature will its length be 1.4 mm longer? $\left[\alpha=9.0 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right]$
A. $48^{\circ} \mathrm{C}$
B. $98^{\circ} \mathrm{K}$
C. $48^{\circ} \mathrm{K}$
D. $98^{\circ} \mathrm{C}$
1.15 When a liquid freezes to become a solid:
A. it absorbs energy
B. its temperature increases
C. its temperature decreases
D. it emits energy
1.16 How much heat is required to raise the temperature of a 0.04 kg stainless steel cup from $20^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ if the specific heat capacity of stainless steel is $0.50 \mathrm{~kJ} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$.
A. 200 J
B. 400 J
C. 800 J
D. 1000 J
1.17 \qquad Is a vector that is tangential to path of an object in a circle:
A. angular force
B. centripetal acceleration
C. centripetal velocity
D. centripetal force
1.18 When the rate of increase of velocity is constant, we say has occur:
A. deceleration
B. acceleration
C. uniform retardation
D. uniform acceleration
1.19 Which of these statements is not true about why weight varies?
A. due to rotation of the earth about its axis
B. due to constant in density of earth
C. due to elliptical shape of the earth
D. due to variation in latitude
1.20 Whenever a liquid is touched slightly, small ripples run across the surface. This statement is an evidence of
A. surface tension
B. capillarity
C. angle of contact
D. proxy

SECTION B

QUESTION 2

2.1 Briefly differentiate between the following terms with examples
(i) Random errors and systematic errors
(ii) Accuracy and precision
2.2 Derive the dimensions of:
(i) Density
(ii) Momentum
2.3 Determine whether the following equation is dimensionally correct.
(i) $v=u+a t^{2}$
2.4 Suppose $A=B^{m} C^{n}$, where A has dimension, $L T, B$ has dimension $L^{2} T^{-1}$, and C has dimensions $L T^{2}$. Determine the dimension of n and m values.
2.5 The mass ' m ' of the largest stone that can be moved by a flowing river depends upon the velocity ' v ' of water, density ' d ' of water and acceleration due to gravity ' g '. Use the method of dimensional analysis to deduce the expression mass of a stone

QUESTION 3

3.1 Determine the angle between the two vectors using the dot product approach:
$\overline{\mathrm{A}}=2 \check{\mathrm{i}}-2 \hat{\jmath}+3 \check{\mathrm{k}}$ and $\bar{B}=-4 \check{\mathrm{I}}+2 \hat{\jmath}-\check{\mathrm{k}}$
3.2 Given that: $\hat{a}=-2 \check{\imath}+2 \hat{\jmath}-2 \check{k}$, find the magnitude of ậ, and the unit vector in the direction of ạ.
3.3 The position \bar{r} of an object is given by [$\left.(2.5 \mathrm{t}) \dot{i}+\left(2.5 \mathrm{t}-4.9 \mathrm{t}^{2}\right) \mathrm{j}\right] \mathrm{m}$ (with t in seconds). Determine;
(i) the velocity when $t=2$ seconds
(iii) the magnitude of the velocity when $t=2$ seconds

QUESTION 4

4.1 A passenger plane accelerated from rest down a runway at a constant acceleration of $2.5 \mathrm{~m} . \mathrm{s}^{-2}$.
(i) Determine the position and velocity of the plane 8 seconds after it starts to move.
(ii) If the speed of $45 \mathrm{~m} / \mathrm{s}$ is required for take-off, what is the minimum length of runway required?
4.2 A spacecraft of mass 300 kg land on the moon. Calculate the moon's gravitational acceleration, g , on the spacecraft. [Take mass of moon $\mathrm{Mm}_{\mathrm{m}}=7.5 \times 10^{22} \mathrm{~kg}$, radius of the moon $=1.6 \times 10^{6} \mathrm{~m}, \mathrm{G}=6.67 \times 10^{-11}$ $\mathrm{Nm}^{2} \mathrm{~kg}^{-2} \mathrm{~J}$.
4.3 A rocket of mass 150 kg is launched on planet Jupiter's surface into space. Calculate the
(i) energy required to overcome the gravitational force of Jupiter.
(ii) velocity of rocket upon launching.
4.4 A CD starts from rest and accelerates to an angular frequency of $12.5 \mathrm{rev} / \mathrm{s}$. Determine the disc's average period T and centripetal velocity V_{c} of the edge of the a disc when the radius is $3.5 \times 10^{-3} \mathrm{~m}$.

QUESTION 5

5.1 Explain the terms adhesion and cohesion.
5.2 Suppose that a huge tank 50 m high and filled with water is open to the atmosphere and is hit with a stray bullet. The bullet pierces one side of the tank allowing water to flow out. The hole is 2 m above the ground. If the hole is so small in comparison with the size of the tank. How quickly will the water flow? Consider acceleration due to gravity to $9.8 \mathrm{~m} / \mathrm{s}^{2}$
5.3 Determine the density of a sphere material, given that it has a radius of 8.2 mm with mass of 200 g .
5.4 During the time when a man had flu, he ran a fever of $7.0^{\circ} \mathrm{C}$ above normal. His body temperature was $44.0^{\circ} \mathrm{C}$ instead of the normal $37.0^{\circ} \mathrm{C}$. Assuming that the man has a mass of 40 kg and that the human body is mostly water, how much heat is required to raise his temperature? [Take specific heat capacity of liquid as, c $\left.=4186 \mathrm{~J} / \mathrm{kg} .{ }^{\circ} \mathrm{C}\right]$

